Introduction to Functional Programming

There is been quite hype around functional programming and its advantage, and its even known as an alternative to object oriented programming. We all have heard about various functional languages such as OCaml, Clojure, Haskell, and many languages such as Python, JavaScript, Scala provide functional programming techniques.

What is Functional Programming ?

Functional programming vs Object-oriented programming

There are some more difference such as using maps over loops as well as unimportance of execution order. Some of these differences will be discussed in following content.

Basic functional programming concepts

Immutable data structures are used in functional programming. Immutable data can not be modified and initially set values are final. As an example if we declare variable as int x = 10 , it wouldn't be changed with x = 12. So you would have to create new data structures instead of modifying existing ones.

Functions are stateless, meaning that functions should be depended on any external state or should not update any external states. If the function is not depended on any state, it will run identically for same input values. This means that it should always perform the task as if the first time. As this would not update any external states there wouldn’t be any side events because of this function.

Let’s first consider following imperative code block:

int x = 2function incrementOne(){


If we run incrementOne() we can see that would result in 3. However if we run incrementOne() again, it would result in 4. We can clearly see that the function incrementOne() is clearly dependent on some external state ( x as of here) and is not a pure function.

Let’s design above code from functional programming prospective:

int x = 2function incrementOne(int i){
return i++

Here incrementOne(2) would result in 3 regardless of the number of times we run the function. Another fact to pay attention is that we are printing out incrementOne(x) and not x. Its because x is immutable and isn’t possible to change from value 2, and have to use new data structure like int y = incrementOne(x).


Lazy evaluation means that it would avoid evaluation till its value is actually needed. As an example when int x = multiply(3,4) it wouldn’t be set to 12 just yet. However if we want to print(x) value will be evaluate for usage. This is also useful when there are redundant functions to be evaluated. In this example int y = add( multiply(3,4) , multiply(3,4) ) evaluation involves repeated multiply(3,4) functions. Here due to lazy evaluation multiply(3,4) would be evaluated just one, since repetition of functions will be recognized.

Recursion over loops is used in functional programming. Pure functional languages would not support impure functions or mutable states. Here for simple for (int i=0 , i<10 , i++) loop we would be using mutable loop counter value of i. This is not acceptable for functional programming and will use recursive functions such as map or forEach for iterating over a list. Furthermore use of pure functions allows compilers to efficiently optimizing using methods such as tail call optimization.

Anyone familiar with recursion is aware of how factorial(n) works. However recursion can be substituted to just about anywhere with iterations. Here we can see an example of how recursion is used in calculating total of an array.

function totalOfArray( currentTotal, arrayA ){
currentTotal = add(currentTotal, arrayA[0])
remainingArray = arrayA.slice(1)

if(remainingArray.length >0){
return totalOfArray(currentTotal, remainingArray)
else {
return currentTotal

This recursion would keep on adding first element of the array in each function call. However currentTotal is passed to recursive function calls as a parameter avoiding any mutable placeholder. If we would have used loops we will be looping through for(int i=0, i < array_A.length, i++) and will be adding to an external global variable as this: total += arrayA[i]. This would violate immutability, stateless behaviour and purity of function.

Why and Why-Not Functional Programming?

Parallel programming is encouraged through functional programming due to lack of mutable states. Numerous functions could be run concurrently and wouldn’t affect other functions or external state since these functions are without side effects. Evaluation of functions should be run concurrently to improve efficiency too.

Testing and debugging is easier with functional programming as we will be using pure functions. These functions should result in same output at all times regardless of the state, therefore we could simply compare inputs with output and confirm whether intended operation was performed.

However due to immutability there can be more memory usage. Each of the result of functions will be new objects. As an example if we want to get double of x = 10, in imperative programming we could just x = x * 2. The result will still be stored in x, only using one int memory space. However in functional programming double(x) result will be stored separately since of immutability and would result in two int memory spaces. So it is good to keep track of memory usage in writing functional programs.

Well, that’s an introduction to Functional Programming and its usage. Feel free to point out any issues regarding the articles as well as any suggestions. Cheers!!!

Full Stack Developer | BiBi

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store